
 107-1 

An Intrinsic Model of Coregionalization that Solves Variance Inflation 
in Colocated Cokriging 

 

Olena Babak and Clayton V. Deutsch 

 

Centre for Computational Geostatistics 
Department of Civil & Environmental Engineering 

University of Alberta 

The longstanding problem of variance inflation in Sequential Gaussian Simulation with Collocated 
Cokriging causes the input statistics not to be reproduced.  In particular, there is often a systematic bias in 
the mean and variance of simulated realizations.  An alternative approach is presented here that is equally 
simple, that is, collocated secondary are used and a model of coregionalization is constructed with the 
correlation coefficient between primary and secondary data.  The secondary data is used at the location 
being estimated and at all data locations.  An intrinsic model of coregionalization is assumed.  The 
resulting technique can be referred to as Intrinsic Collocated Cokriging (ICCK).  The resulting estimates 
are checked carefully and no variance inflation is observed.  SGSIM has been modified to include this 
option and a number of examples are presented.  This implementation should systematically replace all 
versions of the Markov model and collocated cokriging. 

Introduction 

Stochastic simulation is a powerful tool for modeling of phenomena that cannot be described 
deterministically due to their complexity.  A number of methods have been developed for joint simulation 
of dependent random variables.  The most popular and simplest method for modeling primary variable 
based on extensively sampled secondary information is the Sequential Gaussian simulation with Collocated 
Simple Cokriging.  The Collocated Simple Cokriging is build on a Markov-type hypothesis by which 
collocated secondary information is assumed to screen further away data of the same type. 

An unfortunate feature of collocated cokriging is that the kriging variance may be slightly too high.  This 
variance inflation compounds over the sequential path of Sequential Gaussian simulation leading to 
potentially serious problems with histogram reproduction.  An ad hoc method of variance correction has 
been proposed for dealing this problem; however, the correction is case dependent and requires manual 
tuning.  This tuning is often not performed leading to biased resource estimates. 

In this paper we investigate Collocated Simple Cokriging and the reason underlying variance inflation.  As 
a result of this study we propose a new improved approach for cosimulation of dependent random functions 
without the inference and modeling of a full cross-covariance matrix.  The proposed method is based on the 
intrinsic model of correlation between primary and secondary random variables: Intrinsic Collocated 
Cokriging (ICCK). 

The Sequential Gaussian simulation with full Simple Cokriging based on intrinsic model is tested with a 
number of small examples to illustrate the correction of variance inflation, the reproduction of the 
correlation between primary and secondary data, and improved reproduction of the variogram in the new 
approach as opposed to the conventional Sequential Gaussian simulation with Collocated Simple 
Cokriging. 

Simple Cokriging 

Simple Cokriging (CSK) is a natural extension of the Simple Kriging to the case when multivariate data is 
available.  The Simple Cokriging method allows estimating an unknown value at the location of interest not 
only from the data itself, but also based on the auxiliary variables in the neighborhood.  Specifically, the 
Simple Cokriging estimator is the following weighted linear combination of the mean of the variable of 
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interest ( *m ) and the data from different variables located at sample points in the neighborhood of the 
estimation location u* 
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where the CSK weights TT
N

T ],,[ 1 λλ … are found from a Simple Cokriging system given by 
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where the left hand side covariance matrix is built up with square symmetric in  by in  blocks iiC  on the 

diagonal and with rectangular in  by jn  blocs ijC  off the diagonal, with 

.T
jiij CC =  

The blocks ijC  contain either direct ( ji = ) or cross ( ji ≠ ) covariances between sample points.  The 

vectors *ic  contain the covariances with the variable of interest, for a specific variable of the set, between 

sample points and the estimation location. The vectors iλ  represent the weight attached to the sample of 
the i-th variable. 

It follows from system (1)-(2) that in order to perform Simple Cokriging we require a joint model for the 
matrix of covariance functions.  Thus, when K different variables are considered, the covariance matrix in 
the left hand side of Equation (2) requires 2K  covariance functions.  Such inference is very demanding in 
terms of data and subsequent joint modeling, therefore more simple estimation techniques (like Collocated 
Simple Cokriging) handling multiple data variables are frequently employed instead. 

Collocated Simple Cokriging 

Collocated Simple Cokriging is a strategy in which the neighborhood of the auxiliary variable is reduced to 
only one point at the estimation location.  This value of the auxiliary variable *)(uY is said to be 
collocated with the variable of interest )(uZ  at the estimation location u*. The Collocated Simple 
Cokriging estimator is given by 
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where Collocated Simple Cokriging weights T
Y

T
Z ][ λλ are found from the following system of equations 
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where ZZC  is the left hand matrix of the Simple Kriging system of )(uZ  and ZZc  is the corresponding 

right hand side covariance vector.  The vector YZc  contains the cross covariances between the n sample 
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points of )(uZ  and the estimation location u* with its collocated value *).(uY   The cross covariance YZc  
in system (4) is usually calculated using the following Markov or intrinsic correlation model: 

 ,ZYZYZ rc σ=  (5) 

where YZσ  denotes the covariance between Z and Y; and Zr  is the vector of spatial correlations 

.,,1),( 0 nuu …=− αρ α  

Using the Markov model for the cross covariance YZc , we can rewrite system (4) for the Collocated Simple 

Cokriging weights T
Y

T
Z ][ λλ  as  
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where ZR  is the matrix of spatial correlations .,,1,),( nuu …=− βαρ βα  

Note that in order to to perform the collocated cokriging with Markov model, we only need to know the 
covariance function  

)()( hhC ZZZZ ρσ= , 

the variance YYσ  of the auxiliary variable and the correlation coefficient )0(YZYZ ρρ = . Retaining only 
the collocated secondary data, in general, does not affect the resulting estimate, since the close 
neighborhood data are usually very similar in values. However, it may affect the Cokriging estimation 
variance. Cokriging variances are overestimated, oftentimes significantly. This causes serious problem in 
sequential simulation. 

In order to understand the reason underlying the variance inflation in the Collocated Simple Cokriging, in 
the next section we will investigate the question whether the Simple Cokriging reduces to Collocated 
Simple Cokriging with the intrinsic correlation model. 

Simple Collocated Cokriging is not at Intrinsic Model 

It is quite interesting to learn that the Simple Cokriging does not reduce to Collocated Simple Cokriging 
with the intrinsic correlation model. Let us review the proof of this fact (see also Wackernagel, 1995).  

Assume that )(uZ  and )(uY  are intrinsically correlated with unit variances.  Consider Simple Cokriging 

to find the unknown value of the variable of )(uZ  at location u* based on the neighbor data )( αuZ  at n 

sample locations ,,,1, nu …=αα  the corresponding values )( αuY  at the same locations and the value 

of the auxiliary variable )(uY  at the estimation location u*. Then the value of the variable of )(uZ  at 
location u* is given by the Simple Cokriging approach as 

 ,))(())(()*)((*)(*
1

,
1

,0 ∑∑
==

−+−+−+=
n

ZZ

n

YYYZCSK muZmuYmuYmuZ
α

αα
α

αα λλλ  (7) 

where the CSK weights TT
Y

T
Z ][ 0λλλ are given by 
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where Zr  is the vector of spatial correlations ,,,1),( 0 nuu …=− αρ α  and ZR  is the matrix of spatial 

correlations .,,1,),( nuu …=− βαρ βα   

Now note that in order for Simple Cokriging to be reduced to Collocated Simple Cokriging (see eq. (3)-
(6)), the vector of weights TTT

Z ]0[ 0λλ  must be solution of the system (8). Let us check this. Specifically, 

let us substitute TTT
Z ]0[ 0λλ  in system (8), then we will obtain  
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or, in equation format 

With respect to the value of ,YZρ  we can consider now 3 cases: 

 1. 0=YZρ , then we have reduction to simple kriging and .00 =λ  However, 00 =λ  can not be 
a solution of the Collocated Cokriging.  

 2. .1±=YZρ  Consider first ,1−=YZρ , then system (9) can be rewritten as  
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Looking at system (10), it becomes clear that the 1st and 2nd equation in this system are the same, thus 
system (10) can be reduced to the Collocated Simple Cokriging system 
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with solution ,0=Zλ  .10 −=λ  Proof that for ,1=YZρ  system (9) reduces to the trivial Collocated 

Simple Cokriging system with solution ,0=Zλ  ,10 =λ  can be obtained following the same approach as 
outlined above.  

3. ,1,0 ±≠YZρ  then if we multiply the first equation of matrix (9) by ,YZρ and subtract the 
result from the first equation in (9), we will obtain 

ZYZZYZZYZZZYZZZYZZ rrrRrR ρρρλλρλρλ −=+−+ )( 00 , 

or 

02
00 =− ZYZZ rr ρλλ . 

And, thus,  

 0)1( 2
0 =− ZYZ rρλ . (12) 

Due to the fact that ,1±≠YZρ  and there exist non-zero spatial correlations 

,,,1,),( nuu …=− βαρ βα  we can conclude that necessarily .00 =λ  However, 00 =λ  can not be a 
solution of the Collocated Cokriging.  
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Since neither of the values for YZρ  yielded reduction of the Simple Cokriging solution to the Collocated 
Simple Cokriging solution, we can conclude that Simple Cokriging can not be reduced to Collocated 
Simple Cokriging, thus there is no theoretical justification for selecting only one auxiliary sample 
(collocated) for Cokriging even in the case of intrinsic correlation model. 

Source of Variance Inflation in Collocated Cokriging 

Sequential Gaussian Simulation is adapted to model local conditional distributions under a multivariate 
Gaussian model and collocated cokriging.  Simulation is performed by drawing from such conditional 
distributions.  Newly simulated data are used as conditional data in simulation of the new nodes.  Multiple 
equally-probable realizations of the property of interest are created. 

In simulation based on Collocated Simple Cokriging, as was mentioned earlier, a strange problem of 
variance inflation is observed.  The aim of this Section is to determine the reason for this variance inflation. 

Let us consider estimation of the value of the unit variance normally distributed primary variable Z at 
location *2u  using two conditioning (original) neighbor data ),(),( 21 uZuZ  simulated value of the same 

type at location *1u , )(* *1uZ CCSK  given by 
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where )( *1uY  is collocated value to )( *1uZ  of unit variance normally distributed auxiliary variable, the 

CCSK weights T][ 021 λλλ  are given by  
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or, in system format as 
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and )( *1uR  is local independent of the data normal random error with mean of zero and variance of 

);0()()(1))(( 0*122*111*1 YZZZZZ uuuuuRVar ρλρλρλ −−−−−=  and using one collocated data 

).( *2uY  Then the Collocated Simple Cokriging estimate of )( *2uZCCSK  is given by 
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where the CCSK weights T][ 0321 λλλλ  are given  by 
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Let us now check the following  

1) Is the covariance (correlation) between the new estimate and the conditioning data values correct? 

For any i =1, 2,  
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Thus, it is correct! Note that the last two substitutions followed from systems (15) and (17), respectively. 

2) Is the covariance between the new estimate and the previously calculated estimates correct? 
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Now note that if ),())(*),(( *1*2*1*2 uuuZuYCov YZCCSK −= ρ  then the last substitution from equation 
(15) would result in correct covariance between the new estimate and the previously calculated estimates. 
But does ?)())(*),(( *1*2*1*2 uuuZuYCov YZCCSK −= ρ   

Let us assume that it is true, that is, ),())(*),(( *1*2*1*2 uuuZuYCov YZCCSK −= ρ  then the Simple 
Cokriging problem would be necessarily reduced to the Collocated Simple Cokriging problem (which 
inherently ensures this equality), however, as shown in the section above such reduction is impossible even 
in the case of intrinsic correlation model.  Thus, we can conclude that due to the fact that Collocated 
Cokriging system has no control over the cross covariance )),(*),(( *1*2 uZuYCov CCSK  the correct 
covariance between the new estimate and the previously calculated estimates cannot be ensured!  When 
Collocated Simple Cokriging is put into sequential simulation mode, incorrect covariance of the simulated 
data is transferred to the new simulated data, and, as result, unavoidable variance inflation is observed.  

Proposed Solution to the Variance Inflation Problem 

',))(|)(()')(,)(|)(( 12112 zhzuZuZEzhuZzuZuZE ∀∀===+=  

Case study I 

Let us compare the variance of the Simple Cokriging estimator with the variance of the Collocated Simple 
Cokriging estimator. To assess how much larger (smaller) is the variance predicted by the Collocated 
Simple Cokriging than the variance of the Simple Cokriging, we consider the following scale measure: 

%100•=
estimator CSK the of Variance

)estimator  CSK the of Variance -estimator  CCSK the of (Variance
  variance in increase Relative

Based on the above scale measure we will assess the following:  

For a data configuration given in Figure 1, we will determine the relative increase in the variance with 
respect to the following factors: 

1. Correlation between primary and secondary variable; 
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2. Variogram model (and its range). 

When performing Simple Cokriging, secondary data will be considered available at the locations closest to 
the estimation location (part A) and at the same locations as the data on the primary variable (part B). 

Case Study I Results: Part A 

Figure 2 illustrates the two configurations considered for the secondary data information. Each of the 
secondary data locations are considered on the grid of 10 by 10 units (size of the domain is 100 by 100 
units). Figures 3 and 4 illustrate the relative increase in the variance in the Collocated Simple Cokriging 
over Simple Cogriging obtained based on Spherical variogram model with the range of correlation equal to 
the size of the domain for the correlation coefficients between primary and secondary data equal to 
=ρ 0.1, 0.3, 0.6, 0.9 for the configurations a) and b) of Figure 2, respectively. Note that Figures 3 and 4 

also show for comparison the Collocated Simple Cokriging variances for estimates in the study domain. 

First what we must note from Figures 3 and 4 is that when the correlation between primary and secondary 
variable is small, the variance predicted for the estimates by the Collocated Simple Cokriging estimator is 
virtually the same as the variance predicted for the estimates by the Simple Cokriging estimator. This is 
what we expected, since in the case of insignificant primary-secondary data correlation, secondary attribute 
contains little or no information of use for estimation of the primary variable. With increase in the 
correlation between primary and secondary variable, the variances predicted by Collocated Simple 
Cokriging estimator become increasingly higher than the variance predicted for the estimates by the Simple 
Cokriging estimator. The increase in the variance is not that significant, however, we believe that due to the 
sequential mode of the geostatistical simulation, even this increase in the variance can result in significant 
variance inflation. The second factor which would, of course, contribute to the variance inflation in the 
simulation is not appropriateness of the intrinsic correlation model. This factor will be discussed later in 
this work. 

Also note from Figures 3 and 4 the non-smoothness of the maps for the relative increase in the variance. 
This non-smoothness is connected to the configuration of the secondary data information used in the full 
Simple Cokriging. To avoid the non-smoothness of the map we can either use either larger secondary data 
configuration (note the increase in the smoothness when changing from 4 point secondary data 
configuration (Figure 3) to 12 point secondary data configuration (Figure 4)) or pick secondary data 
randomly. Due to the fact that using more secondary data can result in singularity matrix problems, 
instability, etc (see Wackernagel, 1995), it is better to use a second option. Namely, when performing 
Simple Cokriging we should consider secondary data information at the same locations as the data on the 
primary variable. This approach is illustrated below. 

Case Study I Results: Part B 

Figure 5 illustrates the relative increase in the variance obtained based on the Spherical variogram model 
with the range of correlation equal to the size of the domain, that is 100 units, for the correlation 
coefficients between primary and secondary data equal to =ρ 0.1, 0.3, 0.6, 0.9. In estimation via Simple 
Cokriging secondary data is considered to be available at the same locations as the data on the primary 
variable. For better visual comparison Figure 5 also shows the Collocated Simple Cokriging variances for 
estimates in the domain of interest. 

From Figure 5 we can come to the same conclusions as from Figures 3 and 4. That is, with increase in the 
correlation between primary and secondary random variables, variance inflation in primary random 
variable model increases. However, when we use in the Simple Cokriging secondary data at the same 
locations as the primary data, we also gain the smoothness of the resulting relative variance inflation maps. 

Now let us consider results shown in Figure 5 more precisely. Figures 7-9 show the comparison of the full 
Simple Cokriging (CSK) estimation variances and estimation variances obtained based on Collocated 
Simple Cokriging (CCSK) for the three slices, that is slice at X = 20, slice at X = 40 and slice at X = 80, 
respectively, in the domain of interest, see Figure 6. Estimation variance in each case were calculated based 
on the isotropic Spherical variogram aas before and for the same four values of the correlation coefficient 
(0.1, 0.3, 0.6, 0.9) between primary and secondary information were considered. Note that the three chosen 
slices correspond to the following tree scenarios: 1) conditioning data location is one of the points being 
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estimated (slice at X = 20); 2) estimation is performed close to the conditioning data (slice at X = 40); 3) 
estimation is performed quite far from the conditioning data (slice at X = 80). 

It is easy to see from Figures 7-9 that the CSK and CCSK estimation variances obtained for the points on 
the three considered slices are only close to each other when the correlation between primary and auxiliary 
variable is very small. With increase in the correlation between primary and auxiliary information, the 
difference between the CSK estimation variance and the CCSK estimation variance becomes larger and 
larger. The CSK estimation variance is becoming significantly smaller than the CCSK estimation variance 
with increase in the correlation between the primary and secondary information. 

To understand how the CSK and CCSK estimation variances change with increase/decrease in the primary 
variable range of the correlation, let us consider estimation (Figures 10-12) of the points in the same three 
slices as before based on the isotropic Spherical variogram with the range of correlation equal to a) 25% of 
the size of the study domain; b) 50% of the size of the study domain; c) equal to the size of the study 
domain and d) 250% of the size of the study domain and the correlation between primary and secondary 
information equal to 0.9. Figures 10-12 clearly show that with increase in the range of correlation, the 
difference between the CSK estimation variance and the CCSK estimation variance becomes larger and 
larger. The CSK estimation variance becomes significantly smaller (relatively) than the CCSK estimation 
variance. Moreover, if the estimation location is located outside of the range of correlation from the 
conditioning data, than both the CSK and CCSK estimation variances are the same. 

Impact of the variogram model on the CSK and CCSK estimation variances is shown in Figures 13-15. 
Results for the slices at X = 20, X = 40 and X = 80, respectively, were obtained based on the Spherical, 
Exponential and Gaussian variogram models with the range of correlation equal to the size of the study 
domain and the correlation between primary and secondary information equal to 0.9. One can clearly note 
from Figures 13-15 that the variance inflation associated with CCSK estimation is significant for all of the 
variogram models. The most variance inflation is observed when Spherical model is used as the variogram 
model for the data. 

Case study II: Impact of the Secondary Data on the Simple Cokriging Estimate with Intrinsic Model  

Let us now investigate how the weights given to the primary and secondary data are distributed when the 
full Simple Cokriging is performed based on the intrinsic model. The design of this case study is the same 
as in the case study I. That is, we consider estimation of the domain 100 by 100 units based on 8 data 
points. When performing Simple Cokriging, secondary data information is considered at the same locations 
as the data on the primary variable. 

The weights received by the primary data in the Collocated Simple Cokriging and the full Simple 
Cokriging based on the intrinsic model when estimating locations: a) (20, 20); b) (40, 70); c) (80, 40) are 
shown in Figures 16-18, respectively. Note that Figures 16-18 show the weights obtained based on the 
Spherical variogram model with the range of correlation equal to the size of the study domain using the 
correlation coefficient between primary and secondary information equal to 0.3 and 0.9. The resulting CSK 
and CCSK estimation variances obtained when estimating these three locations of interest are also tabulated 
in these figures.  

It is apparent from Figures 16-18 that when the range of correlation is small the primary data weights 
obtained based on both models are virtually the same, however, with increase in the range of correlation, 
the accumulated weight received by the primary data in the full Simple Cokriging based on the intrinsic 
model is much higher than the accumulated weight received by the primary data in the Collocated Simple 
Cokriging. The weight received by the collocated data in the Simple Cokriging is also higher than the 
respective weight obtained in the Collocated Simple Cokriging. However, the accumulated weight received 
by the secondary data in the Simple Cokriging based on the intrinsic model is quite small. 

Proposed Solution to the Variance Inflation Problem 

In the view of the above results a natural solution for the problem of the variance inflation in the Sequential 
simulation of the primary variable based on the auxiliary data information is the following. Instead of just 
considering Collocated Simple Cokriging based on the Markov correlation model, we should consider the 
full Simple Cokriging based on the intrinsic model. Due to the fact that Simple Cokriging estimates have 
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larger variance (smaller missing variance), less variability will be added to the estimates to obtain 
stationary variance. As result, less variability will be observed in the generated primary variable 
realizations.  

In order to assess the reduction in the variance inflation and appropriateness of the above outlined proposal, 
we will consider the following small example. 

Example 

Let us consider the following Linear Model of Coregionalization (LMC) for the primary unit variance, zero 
mean random variable Z and secondary unit variance, zero mean random variable Y (see Deutsch, 2002) 
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, (18) 

where )(),( 3216 hGaushSph  denote the Spherical variogram model with the range of 16 and Gaussian 
variogram model with the range of 32. Note that system (18) is a valid LMC, since 

0626.025.025.009.09.01.0 =⋅≥=⋅  and 0625.025.025.009.01.09.0 =⋅≥=⋅ . 

Then the correlation at lag 0 between primary and secondary random variables can be calculated under 
stationarity as 

5.025.025.01])0(25.0)0(25.0[1)0(1 3216 =−−=⋅+⋅−=−= GausSphYZYZ γρ . 

Now let us consider unconditional sequential simulation (SGS) based on the Simple Collocated Cokriging 
for the primary variable Z (continuity of Z is given by )(hZZγ  in system (18)) using exhaustive secondary 

random variable Y and coefficient of correlation 5.0=YZρ . The exhaustive secondary information for Y 

was obtained by unconditional Sequential Gaussian Simulation (SGS) with variogram model )(hYYγ  
given in (18). Figure 19 shows the distributions of the means and variances of the secondary random 
variable for 100 SGS realizations. In sequential simulation for both primary and secondary random 
variables maximum number of simulated nodes to use was set to 12, maximum search radii were set to 
largest variogram range (that is, 32).  

Summary of the results for the primary random variable Z for 100 SGS realization on the area of 256 by 
256 cells are shown in Figure 20. This figure shows the distributions of the means and variances of the 
primary random variable Y obtained based on Sequential Gaussian Simulation with Simple Collocated 
Cokriging. Note that despite the expected mean of the distribution of the primary random variable Z 
modeled by Sequential Gaussian Simulation with Simple Collocated Cokriging is virtually zero, there is a 
dramatic deviation of the observed expected variance from the target variance of one. The deviation of the 
variance of the primary random variable Z modeled by Sequential Gaussian Simulation with Simple 
Collocated Cokriging from the target is, on average, around 28%. One can argue that this strong deviation 
is largely impacted by the mismatch in the continuity of the primary and secondary random variable 
(Markov model is inappropriate). In order to understand this better, let us, first, consider modeling of the 
primary random variable Z using Sequential Gaussian Simulation with full Simple Cokriging based on the 
intrinsic model of correlation (see (8)). [Secondary information in Sequential Gaussian Simulation with full 
Simple Cokriging is selected at the same locations as the primary data]. Figure 21 shows the distributions 
of the means and variances of the primary random variable Z obtained in this case. Note that both the 
expected mean and expected variance are both virtually the same as target mean of 0 and target variance of 
1. Thus, we can see that indeed the main factor which triggers the variance inflation in Sequential Gaussian 
Simulation with Simple Collocated Cokriging is not the assumption of Markov model, but using only one 
collocated data when performing Cokriging. Therefore, our recommendation is to always use full Simple 
Cokriging in the sequential simulation mode. Note also that Figure 23 shows results for the means and 
variances of the realizations of the primary random variable Z obtained using Sequential Gaussian 
Simulation with full Simple Cokriging based on the intrinsic model of correlation  when secondary 
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information is taken at the nearby locations to the estimation location, see Figure 22 for the data 
configuration. Clearly, reproduction of the target statistics shown in Figure 23 is much better than the 
respective results of Sequential Gaussian Simulation with Simple Collocated Cokriging. However, as we 
can see the results depend somewhat on the configuration. Therefore, ones again we conclude that the 
Sequential Gaussian Simulation with full Simple Cokriging using secondary data at the same locations as 
the primary data is better choice (no dependence on the data configuration, etc.) 

Another advantage of using the Sequential Gaussian Simulation with full Simple Cokriging based on 
intrinsic model over Sequential Gaussian Simulation with Simple Collocated Cokriging is the improved 
primary variable variogram reproduction. Figures 24-26 show variogram reproduction of the secondary 
random variable Y by the unconditional Sequential Guassian Simulation, variogram reproduction of the 
primary random variable Z by the unconditional Sequential Guassian Simulation with Simple Collocated 
Cokriging and variogram reproduction of the primary random variable Z by the unconditional Sequential 
Guassian Simulation with full Simple Cokriging (secondary information selected at the same locations as 
primary variable). It is apparent from Figures 25 and 26 that mismatch between target semivariogram for 
the primary variable Z is significantly reduced by applying full Simple Cokriging based on intrinsic model 
instead of Collocated Simple Cokriging. Note that amount of mismatch could also depends on such 
parameters as maximum number of nodes used in simulation, search radii, etc. In the case study considered 
in this paper this parameters were set to 12 nodes and maximum variogram range, respectively. Note also 
that if the continuity of the primary and secondary random variables would be the same the mismatch 
between target semivariogram and semivariogram reproduced in the unconditional Sequential Gaussian 
Simulation with full Simple Cokriging would be removed entirely.  

It is also important to note that modeling of the primary variable based on the secondary random variable in 
the full Simple Cokging based on the intrinsic model framework also ensures reproduction of the 
correlation between primary and secondary random variable. This point is illustrated in Figure 27. Figure 
27 shows 100 correlation coefficients obtained for each of the 100 SGS realizations with full Simple 
Cokging of the primary random variable. The observed mean correlation coefficient of 0.4640 is very close 
to the target correlation coefficient of 0.5 used in simulation.  

FORTRAN code 

The Sequential Gaussian Simulation with full Simple Cokriging based on intrinsic model was incorporated 
into sgsim program. The new program is called cck_sgsim. This program uses the same parameter file as 
sgsim, see Deutsch and Journel (1998) for reference. The only difference is that it has 6 options for the type 
of Kriging, instead of five. Specifically, the first five options are the same as in sgsim: 0 = Simple Kriging, 
1 = Ordinary Kriging, 2 = Locally Varying Mean, 3 = External Drift, 4 = Collocated Simple Cokriging, and 
the last one sixth option (new) is 5 = Collocated Cokriging. Format of results is the same as that of original 
sgsim. 

Discussion 

In this paper a new approach for dealing with variance inflation in the sequential simulation using 
secondary data information was proposed. The proposed approach employs the full Simple Cokriging based 
on the intrinsic variogram model to calculate local distributions. It was shown via small examples that the 
new methodology removes entirely the variance inflation, insures reproduction of the correlation between 
primary and secondary data and improves the reproduction of the variogram even when the primary and 
secondary variables differ significantly in continuity. 
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